A 3D Printer That Generates Human Embryonic Stem Cells
2013 02 07

By Rebecca Boyle | io9.com


3-D printers can produce gun parts, aircraft wings, food and a lot more, but this new 3-D printed product may be the craziest thing yet: human embryonic stem cells. Using stem cells as the "ink" in a 3-D printer, researchers in Scotland hope to eventually build 3-D printed organs and tissues. A team at Heriot-Watt University used a specially designed valve-based technique to deposit whole, live cells onto a surface in a specific pattern.

This article originally appeared at Popular Science.

The cells were floating in a "bio-ink," to use the terminology of the researchers who developed this technique. They were able to squeeze out tiny droplets, containing five cells or fewer per droplet, in a variety of shapes and sizes. To produce clumps of cells, the team printed out cells first and then overlaid those with cell-free bio-ink, resulting in larger droplets or spheroids of cells. The cells would group together inside these spheroids. Spheroid size is key, because stem cells need certain conditions to work properly. This is why very precisely controlled 3-D printing could be so valuable for stem cell research.

After being squeezed out of a thin valve, the cells were still alive and viable, and able to transform into any other cell in the body, the researchers say. It’s the first time anyone has printed human embyronic stem cells, said lead researcher Will Wenmiao Shu, a professor at Heriot-Watt. But ... why?

Eventually, they could be used to print out new tissues, or as filler inside existing organs, which would be regenerated. It could even serve to limit animal testing for new drug compounds, allowing them to be tested on actual human tissue, said Jason King, business development manager at Roslin Cellab, one of the research partners. "In the longer term, [it could] provide organs for transplant on demand, without the need for donation and without the problems of immune suppression and potential organ rejection," he said in a statement.

The team took stem cells from an embryonic kidney and from a well-studied embryonic cell line, and grew them in culture. They had to build a custom reservoir — let’s call it an inkwell — to safely house the delicate cells, and then they added some large-diameter nozzles. A pressurized air supply pumps the cells from the inkwell into the valves, which contain pressurized nozzles on the end. The team could control the amount of cells dispensed by changing any of the factors, including the pneumatic pressure, nozzle diameter or length of time the nozzle stayed open.

At first the researchers printed droplets, but ultimately, they were so precise that they made cell spheroids in a variety of shapes and sizes, like the university logo above. One interesting wrinkle: The cells also formed spheroids in the inkwells. More work needs to be done to explain that.

The researchers also took several steps to make sure the cells survived the printing process. Examining the results of several experiments, they found 99 percent of the cells were still viable after running through the valve-based printer.

[...]

Read the full article at: io9.com





In partnership with Roslin Cellab, the university’s biomedical engineering group came up with a valve-based printing technique that produces highly-viable, uniformly-sized droplets of stem cells. Most importantly, though, the cells maintain their pluripotency — the ability to differentiate into every adult human cell type. While the prospect of lab-grown custom organs is incredibly exciting, the group is careful to temper its outlook, noting that any such application would be "in the longer term."
Source: TheVerge.com



Related Articles
Bioengineers ’3D Print’ Living Human Embryonic Stem Cells for First Time
This Child Has A Robot Hand Made With 3D Printers
Long-Gone Mollusk Comes to Life with 3D Printer
3D printer creates physical model of fetus for expecting parents
Artificial blood vessels created on a 3D printer


Latest News from our Front Page

Group Polarization and the Fad of Ethno-masochism
2014 11 26
From "Group polarization: A critical review and meta-analysis". Journal of Personality and Social Psychology. 6 50 (6): 1141--1151 The psychology of White self hatred. Political correctness IS a mental disorder. More: Group polarization: A critical review and meta-analysis. Isenberg, Daniel J. the paper Indoctrinate U Harvard Professor Noel Ignatiev talks about how to end the White race The History of Political Correctness The Narrative: The origins of Political ...
Credo: A Nietzschean Testament by Jonathan Bowden
2014 11 26
This lecture by Jonathan Bowden was given at the 11th New Right meeting in London on September 8, 2007. The original title of the presentation was “The Art and Philosophy of Jonathan Bowden.” I think ideas are inborn, and you’re attracted, if you have any, toward certain systems of thinking and sensibility and response. From a very young age, I was ...
A Look Back at the OJ Simpson Verdict -- Reactions
2014 11 26
This is a look back at the different reactions to the OJ Simpson verdict some 20 years ago (exact date of verdict was Oct 3, 1995). The OJ Simpson jury consisted of 9 Blacks, 1 Hispanic, and 2 Whites. It would raise eyebrows after they only deliberated for 4 hours in a case that they were involved in for almost ...
New York Times Publishes Darren Wilson’s Street Address and Photo of House #Ferguson
2014 11 26
Hey here are the two @nytimes scumbags that published Wilson’s home address. —> @juliebosman & @campbellnyt— Ben Howe (@BenHowe) November 25, 2014 Michael Brown’s Stepdad Shouting ‘Burn This Bitch Down’ The New York Times published information about the address of Ferguson Police Officer Darren Wilson on Monday in a move that has generated controversy. Tensions are running high in Ferguson, Missouri, as ...
How Monsanto is Destroying the Brains and Health of Everyone
2014 11 25
Interested in slowing your aging process? Take note! One of my most recent blog entries summarized roughly 10 years of research related to the consequences of inflammatory processes in the periphery of the body, such as the gut, and how this was driving brain degenerative inflammatory processes within the brain. One of the key findings from that research was how pathogenic ...
More News »